Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2761: 121-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427234

RESUMO

Cell-based assay (CBA) is an immunofluorescence assay that is extensively used for the confirmatory diagnosis of inflammatory demyelinating diseases of the central nervous system, like neuromyelitis optica spectrum disorder (NMOSD). Detecting the type of autoantibody present in the sera of the patients is the primary goal. CBA is the most sensitive and recommended detection method among all similar tools. Briefly, serum autoantibody is screened by transfecting specific cells seeded on cover glasses with full-length specific antigen fused with green fluorescent protein (GFP), followed by treating them with the patient serum used here as the source of primary antibody. The autoantibody-treated cells are further labeled with a rhodamine-conjugated secondary antibody. The co-localization of GFP and rhodamine is visualized by confocal microscopy, and the intensity of fluorescence is evaluated to determine the presence of autoantibody. A detailed protocol to screen antibodies against AQP4 and MOG in human sera using this method is described.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/diagnóstico , Autoanticorpos , Aquaporina 4 , Imunofluorescência , Glicoproteína Mielina-Oligodendrócito , Rodaminas
2.
Methods Mol Biol ; 2761: 267-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427243

RESUMO

Cytoskeletal and microtubule atrophy are major hallmarks of Alzheimer's disease (AD). A method to investigate endogenous proteins that can interact/stabilize the cytoskeleton (under pathological cues) is rare. Here, we describe how receptor tyrosine kinase-like orphan receptor 1 (ROR1), a receptor tyrosine kinase (RTK), can act as a neuroprotective molecule by promoting neurite outgrowth, stabilizing cytoskeletal components, and altering the dynamics of actin assembly in a cell culture model of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Técnicas de Cultura de Células , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética
3.
Methods Mol Biol ; 2761: 421-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427253

RESUMO

Huntington's disease (HD) pathogenesis involves deregulation of coding and noncoding RNA transcripts of which the involvement of long noncoding RNAs (lncRNA) has been realized recently. Of these, Meg3, Neat1, and Xist showed a consistent and significant increase in HD cell and animal models. In the present study, we formulate a methodology to visualize and quantify intracellular aggregates formed by mutant HTT protein. This method employs the use of both confocal laser scanning and super resolution (N-SIM) microscopy to accurately estimate aggregate numbers. Further, to determine the role of two lncRNAs Meg3 and Neat1 in the formation of aggregates of mutant HTT, we used commercially available siRNAs against Meg3 and Neat1 for transiently knocking them down in mouse Neuro2a and human SHSY5Y cells. Co-transfection of 83Q-DsRed and siRNA specific for Neat1 or Meg3 resulted in decreased intracellular aggregates of 83Q-DsRed in both the cell lines. We have established a quantitative method to estimate and directly or indirectly modulate the formation of mutant HTT aggregates.


Assuntos
Doença de Huntington , RNA Longo não Codificante , Camundongos , Humanos , Animais , RNA Longo não Codificante/genética , Agregados Proteicos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Linhagem Celular , RNA não Traduzido , Transfecção , Doença de Huntington/patologia
4.
Life Sci ; 302: 120652, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598655

RESUMO

Altered expressions of Receptor Tyrosine Kinases (RTK) and non-coding (nc) RNAs are known to regulate the pathophysiology of Alzheimer's disease (AD). However, specific understanding of the roles played, especially the mechanistic and functional roles, by long ncRNAs in AD is still elusive. Using mouse tissue qPCR assays we observe changes in the expression levels of 41 lncRNAs in AD mice of which only 7 genes happen to have both human orthologs and AD associations. Post validation of these 7 human lncRNA genes, MEG3 and MALAT1 shows consistent and significant decrease in AD cell, animal models and human AD brain tissues, but MALAT1 showed a more pronounced decrease. Using bioinformatics, qRT-PCR, RNA FISH and RIP techniques, we could establish MALAT1 as an interactor and regulator of miRs-200a, -26a and -26b, all of which are naturally elevated in AD. We could further show that these miRNAs target the RTK EPHA2 and several of its downstream effectors. Expectedly EPHA2 over expression protects against Aß1-42 induced cytotoxicity. Transiently knocking down MALAT1 validates these unique regulatory facets of AD at the miRNA and protein levels. Although the idea of sponging of miRNAs by lncRNAs in other pathologies is gradually gaining credibility, this novel MALAT1- miR-200a/26a/26b - EPHA2 regulation mechanism in the context of AD pathophysiology promises to become a significant strategy in controlling the disease.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Proteína Tirosina Quinases/genética , RNA Longo não Codificante/metabolismo , Receptor EphA2
5.
J Neuroimmunol ; 361: 577752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715591

RESUMO

Neuromyelitis Optica (NMO) is an autoimmune inflammatory disease that affects the optic nerves and spinal cord. The autoantibody is generated against the abundant water channel protein of the brain, Aquaporin 4 (AQP4). Of the two isoforms of AQP4, the shorter one (M23) often exists as a supramolecular assembly known as an orthogonal array of particles (OAPs). There have been debates about the fate of these AQP4 clusters upon binding to the antibody, the exact mechanism of its turnover, and the proteins associated with the process. Recently several clinical cases of NMO were reported delineating the effect of Rituximab (RTX) therapy. Extending these reports at the cell signaling level, we developed a glioma based cellular model that mimicked antibody binding and helped us track the subsequent events including a variation of AQP4 levels, alterations in cellular morphology, and the changes in downstream signaling cascades. Our results revealed the extent of perturbations in the signaling pathways related to stress involving ERK, JNK, and AKT1 together with markers for cell death. We could also decipher the possible routes of degradation of AQP4, post-exposure to antibody. We further investigated the effect of autoantibody on AQP4 transcriptional level and involvement of FOXO3a and miRNA-145 in the regulation of transcription. This study highlights the differential outcome at the cellular level when treated with the serum of the same patient pre and post RTX therapy and for the first time mechanistically describes the effect of RTX.


Assuntos
Aquaporina 4/metabolismo , Autoanticorpos/sangue , Autoantígenos/metabolismo , Imunoglobulina G/sangue , Neuromielite Óptica/metabolismo , Rituximab/uso terapêutico , Adulto , Aquaporina 4/genética , Aquaporina 4/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestrutura , Forma Celular , Extensões da Superfície Celular/ultraestrutura , Feminino , Proteína Forkhead Box O3/fisiologia , Glioblastoma , Humanos , Leupeptinas/farmacologia , Masculino , MicroRNAs/genética , Microscopia Confocal , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Análise de Célula Única , Transcrição Gênica , Adulto Jovem
6.
Sci Rep ; 11(1): 19254, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584188

RESUMO

Alzheimer's disease (AD) involves severe cytoskeletal degradation and microtubule disruption. Here, we studied the altered dynamics of ROR1, a Receptor Tyrosine Kinase (RTK), and how it could counter these abnormalities. We found that in an Aß1-42 treated cell model of AD, ROR1 was significantly decreased. Over expressed ROR1 led to the abrogation of cytoskeletal protein degradation, even in the presence of Aß1-42, preserved the actin network, altered actin dynamics and promoted neuritogenesis. Bioinformatically predicted miRNAs hsa-miR-146a and 34a were strongly up regulated in the cell model and their over expression repressed ROR1. LncRNA NEAT1, an interactor of these miRNAs, was elevated in mice AD brain and cell model concordantly. RNA Immunoprecipitation confirmed a physical interaction between the miRNAs and NEAT1. Intuitively, a transient knock down of NEAT1 increased their levels. To our knowledge, this is the first instance which implicates ROR1 in AD and proposes its role in preserving the cytoskeleton. The signalling modalities are uniquely analyzed from the regulatory perspectives with miR-146a and miR-34a repressing ROR1 and in turn getting regulated by NEAT1.


Assuntos
Doença de Alzheimer/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética , Proteólise , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo
7.
Biochem J ; 478(17): 3297-3317, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34409981

RESUMO

Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/ß-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.


Assuntos
Doença de Alzheimer/metabolismo , Quinase do Linfoma Anaplásico/metabolismo , Citoesqueleto/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Via de Sinalização Wnt/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Quinase do Linfoma Anaplásico/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas do Citoesqueleto/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Células Hep G2 , Proteínas de Homeodomínio/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fatores de Transcrição Box Pareados/genética , Receptores Proteína Tirosina Quinases/genética , Transfecção
8.
RSC Adv ; 11(6): 3354-3362, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424305

RESUMO

Aggregation of intrinsically disordered as well as the ordered proteins under certain premises or physiological conditions leads to pathological disorder. Here we have presented a detailed investigation on the effect of a porous metallic (Au) and a non-metallic (Si) nanomaterial on the formation of ordered (fiber-like/amyloid) and disordered (amorphous) aggregates of proteins. Porous nanogold (PNG) was found to reduce the amyloid aggregation of insulin but does not have much impact on the lag phase in the aggregation kinetics, whereas porous nano-silica (PNS) was found both to decrease the amount of aggregation as well as prolong the lag phase of amyloid fiber formation from insulin. On the other hand, both the porous nanoparticles are found to decrease the extent of amorphous aggregation (with slight improvement for PNS) of pathogenic huntingtin (Htt) protein in Huntington's disease cell model. This is a noted direct observation in controlling and understanding protein aggregation diseases which may help us to formulate nanotherapeutic drugs for future clinical applications.

9.
Curr Alzheimer Res ; 17(6): 499-507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851944

RESUMO

Neurodegenerative Diseases (NDD) are the major contributors to age-related causes of mental disability on a global scale. Most NDDs, like Alzheimer's Disease (AD), are complex in nature - implying that they are multi-parametric both in terms of heterogeneous clinical outcomes and underlying molecular paradigms. Emerging evidence from high throughput genomic, transcriptomic and small RNA sequencing experiments hint at the roles of long non-coding RNAs (lncRNAs) in AD. X-inactive Specific Transcript (XIST), a component of the Xic, the X-chromosome inactivation centre, is an RNA gene on the X chromosome of the placental mammals indispensable for the X inactivation process. An extensive literature survey shows that aberrations in Xist expression and in some cases, a disruption of the Xchromosome inactivation as a whole play a significant role in AD. Considering the enormous potential of Xist as an endogenous silencing molecule, the idea of using Xist as a non-conventional chromosome silencer to treat diseases harboring chromosomal alterations is also being implemented. Comprehensive knowledge about how Xist could play such a role in AD is still elusive. In this review, we have collated the available knowledge on the possible Xist involvement and deregulation from the perspective of molecular mechanisms governing NDDs with a primary focus on Alzheimer's disease. Possibilities of XIST mediated therapeutic intervention and linkages between XIC and preferential predisposition of females to AD have also been discussed.


Assuntos
Doença de Alzheimer/genética , Instabilidade Cromossômica/genética , Cromossomos Humanos X/genética , Predisposição Genética para Doença/genética , RNA Longo não Codificante/genética , Doença de Alzheimer/etiologia , Animais , Humanos
10.
FEBS J ; 286(22): 4525-4541, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31276298

RESUMO

Mitofusin-2 (MFN2) is primarily involved in mitochondrial fusion and participates in diverse biological processes. Several reports show that MFN2 is a target of different miRNAs; however, the transcriptional regulation of MFN2 has not been extensively studied. To gain insight into the transcriptional regulation of MFN2, we expressed E2F transcription factor 1 (E2F1) exogenously and observed that it increased the endogenous expression of MFN2 by binding to its putative promoter region. Although the levels of E2F1 were shown to vary during the cell cycle, the expression of MFN2 and its regulator SP1 did not change throughout the different phases, suggesting that E2F1 regulates MFN2 in a cell-cycle-independent manner. In the cell-cycle phases, where the expression of E2F1 was reduced, SP1 might act in its place to regulate the expression of MFN2. We showed that E2F1 and SP1 are present as a complex on the promoter of MFN2 during the S-phase as well as in E2F1 overexpressing cells, suggesting that they may regulate the expression of MFN2 synergistically. Furthermore, we found that E2F1 modulated mitochondrial fusion and mitophagy, likely through regulation of MFN2. Bioinformatic analysis revealed that several potential targets of E2F1 are localized in mitochondria and associated with autophagy. Collectively, these data identify the E2F1-MFN2 axis as a regulator of mitochondrial morphology and mitophagy, suggesting a potential therapeutic target for the treatment of mitochondrial disorders.


Assuntos
Fator de Transcrição E2F1/metabolismo , GTP Fosfo-Hidrolases/genética , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Mitofagia , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , Fase S
11.
Mol Cell Biochem ; 459(1-2): 171-182, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154588

RESUMO

Alzheimer's disease (AD) and type 2 diabetes (T2D) share the common hallmark of insulin resistance. It is conjectured that receptor tyrosine kinases (RTKs) play definitive roles in the process. To decipher the signaling overlap behind this phenotypic resemblance, the activity status of RTKs is probed in post-mortem AD and T2D tissues and cell models. Activities of only about one-third changed in a similar fashion, whereas about half of them showed opposite outcomes when exposed to contrasting signals akin to AD and T2D. Interestingly, irrespective of disease type, RTKs with enhanced and compromised activities clustered distinctly, indicating separate levels of regulations. Similar regulatory mechanisms within an activity cluster could be inferred, which have potential to impact future therapeutic developments.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Resistência à Insulina , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Doença de Alzheimer/patologia , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Células Hep G2 , Humanos
12.
Alzheimers Dement (N Y) ; 5: 154-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31193333

RESUMO

INTRODUCTION: Amyloid fibrils are misfolded, protease-resistant forms of normal proteins. They are infectious such as prions or noninfectious such as ß-amyloid (Aß) fibrils causing Alzheimer's disease (AD). Prions and amyloids are structurally similar, possessing cross ß-pleated sheet-like structures. As microbial keratinase could degrade prions, we tested keratinase activity on Aß fibrils. METHODS: Lysozyme treated with urea generates Aß fibrils demonstrated by immunoblotting with anti-Aß antibody, high-performance liquid chromatography, and Congo red absorption spectroscopy. Two keratinases, Ker1 and Ker2, were purified from an actinomycete Amycolatopsis sp. MBRL 40 and incubated with Aß fibrils. RESULTS: Soluble Ker1 and Ker1 reconstituted on neutral/cationic liposomes degraded Aß fibrils efficiently. Ker 2 was less potent. DISCUSSION: Drugs that target AD inhibit acetylcholinesterase or formation of Aß fibrils and downstream effects. These drugs have side effects and do not benefit globally in cognition. Keratinases are novel molecules for drug development against AD.

13.
RNA Biol ; 15(10): 1348-1363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321100

RESUMO

Altered expression levels of protein-coding genes and microRNAs have been implicated in the pathogenesis of Huntington's disease (HD). The involvement of other ncRNAs, especially long ncRNAs (lncRNA), is being realized recently and the related knowledge is still rudimentary. Using small RNA sequencing and PCR arrays we observed perturbations in the levels of 12 ncRNAs in HD mouse brain, eight of which had human homologs. Of these, Meg3, Neat1, and Xist showed a consistent and significant increase in HD cell and animal models. Transient knock-down of Meg3 and Neat1 in cell models of HD led to a significant decrease of aggregates formed by mutant huntingtin and downregulation of the endogenous Tp53 expression. Understanding Meg3 and Neat1 functions in the context of HD pathogenesis is likely to open up new strategies to control the disease.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , RNA Longo não Codificante/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , RNA Longo não Codificante/antagonistas & inibidores , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/genética
14.
Dis Model Mech ; 10(5): 655-669, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360125

RESUMO

Alzheimer's disease (AD) manifests as neuronal loss. On the premise of Grb2 overexpression in AD mouse brain and brain tissues of AD patients, our study primarily focuses on the stability of cytoskeletal proteins in the context of degenerative AD-like conditions. Two predominant molecular features of AD, extracellular accumulation of ß-amyloid oligomers and intracellular elevation of amyloid precursor protein intracellular domain levels, have been used to closely inspect the series of signalling events. In their presence, multiple signalling pathways involving ROCK and PAK1 proteins lead to disassembly of the cytoskeleton, and Grb2 partially counterbalances the cytoskeletal loss. Increased Grb2-NOX4 interactions play a preventive role against cytoskeletal disassembly, in turn blocking the activity of nitrogen oxides and decreasing the expression of slingshot homolog 1 (SSH-1) protein, a potent inducer of cytoskeleton disassembly. This study unravels a unique role of Grb2 in protecting the cytoskeletal architecture in AD-like conditions and presents a potential new strategy for controlling neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Citoesqueleto/metabolismo , Proteína Adaptadora GRB2/metabolismo , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , NADPH Oxidase 4/metabolismo , Transdução de Sinais
15.
Mol Cell Biochem ; 424(1-2): 45-55, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27734225

RESUMO

ApoA1 is a player in reverse cholesterol transport that initiates multiple cellular pathways on binding to its receptor ABCA1. Its relation to neuronal injury is however unclear. We found ApoA1 to be increasingly abundant at a later time point in the secondary phase of traumatic spinal cord injury. In a cellular injury model of neuroblastoma, ApoA1 showed an initial diminished expression after infliction of injury, which sharply increased thereafter. Subsequently, ApoA1 was shown to alter wound healing dynamics in neuroblastoma injury model. It was observed that an initial lag in scratch wound closure was followed by rapid healing in the ApoA1 treatment group. Activation of ERK pathway and Actin polymerisation by ApoA1 corroborated its role in healing after neuronal injury. We propose that ApoA1 is increasingly expressed and secreted as a delayed response to neuronal injury, and this is a self-protecting mechanism of the injured system.


Assuntos
Apolipoproteína A-I/biossíntese , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Regeneração , Traumatismos da Medula Espinal/metabolismo , Adulto , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
16.
Biosystems ; 150: 46-51, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27587340

RESUMO

Aggregation prone Huntingtin (Htt) protein and its aberrations, causing protein misfolding, have been the prototype of intense research for several decades. Misfolded aggregates or oligomers of different sizes not only deregulate the homeostasis, cellular machinery also counterbalances the effects at least at the initial stages, till the balance tilts towards toxicity and degeneration. In this paper, we combine experimental approaches with system based computational modeling to decipher the molecular mechanisms as well as the hidden dynamics leading to neuronal death in HD. We built an abstracted Boolean gate based electronic circuit that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, at the initial stages of Htt aggregate formation, individual changes in different protein levels and their interactions in cascade constitute the Grb2-pERK-Foxd3 feedback loop that is sufficient to create Hill-like sensitivity and prevent aggregation to the extent till mutant Htt (mHtt) aggregates become predominant in the cell when they spatially isolate the homeostatic reaction mechanism.


Assuntos
Retroalimentação Fisiológica , Redes Reguladoras de Genes/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Doenças Neurodegenerativas/genética , Linhagem Celular Tumoral , Retroalimentação Fisiológica/fisiologia , Humanos , Doença de Huntington/patologia , Doenças Neurodegenerativas/patologia
17.
Clin Proteomics ; 13: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152104

RESUMO

The dynamic field of neurosciences entails ever increasing search for molecular mechanisms of disease states, especially in the domain of neurodegenerative disorders. The previous century heralded the techniques in proteomics when indexing of the human proteomes relating to various disease conditions became important. Early stage research in certain diseases or pathological conditions requires a more holistic approach of first discovering the proteins of interest for the condition. Despite its limitations, proteomics is one of the most powerful techniques available to us today to dissect the molecular scenario in a particular disease situation. In this review we will discuss about the current clinical research in neurodegenerative disorders that employ proteomics techniques. We will specifically focus on our understanding of Alzheimer's disease, traumatic spinal cord injury and neuromyelitis optica. Discussions will include ongoing worldwide research in these areas, research in India and specifically our laboratory in these domains of neurodegenerative conditions.

18.
Eur J Cell Biol ; 95(6-7): 182-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27067261

RESUMO

To decipher the function(s) of HYPK, a huntingtin (HTT)-interacting protein with chaperone-like activity, we had previously identified 36 novel interacting partners of HYPK. Another 13 proteins were known earlier to be associated with HYPK. On the basis of analysis of the interacting partners of HYPK, it has been shown that HYPK may participate in diverse cellular functions relevant to Huntington's disease. In the present study, we identified additional 5 proteins by co-immunoprecipitation and co-localization. As of now we have 54 primary interactors of HYPK. From the database we collected 1026 unique proteins (secondary interactors) interacting with these 54 primary HYPK interacting partners. We observed that 10 primary and 91 secondary interacting proteins of HYPK are associated with two types of autophagy processes. We next tested the hypothesis that the hub, HYPK, might itself be involved in autophagy. Using mouse striatal STHdh(Q7)/Hdh(Q7) cell lines, we observed that over expression of HYPK significantly increased background cellular autophagy, while knock down of endogenous HYPK decreased the autophagy level as detected by altered LC3I conversion, BECN1 expression, cleavage of GFP from LC3-GFP, ATG5-ATG12 conjugate formation and expression of transcription factors like Tfeb, Srebp2 and Zkscan3. This result shows that HYPK, possibly with its interacting partners, induces autophagy. We further observed that N-terminal mutant HTT reduced the cellular levels of LC3II and BECN1, which could be recovered significantly upon over expression of HYPK in these cells. This result further confirms that HYPK could also be involved in clearing mutant HTT aggregates by augmenting autophagy pathway.


Assuntos
Proteínas de Transporte/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Proteínas de Transporte/genética , Técnicas de Silenciamento de Genes , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos
19.
Front Biosci (Elite Ed) ; 8(3): 460-77, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27100352

RESUMO

Limited axonal regeneration after traumatic injuries to the CNS presents a challenge in neuroscience. Investigation of CSF from subjects with spinal cord injury (SCI) has found that the lipid catabolism pathway is implicated in the post injury scenario. Sequestration of the CNS by the blood brain barrier ensures a mechanism of cholesterol metabolism and recycling distinct from that in the peripheral tissues. Apolipoprotein A1, the protein component of high density lipoprotein (HDL), is an abundant protein in the mammalian cerebrospinal fluid. Interaction of ApoA1 with its cellular receptor, ABCA1, gives rise to several signaling events, such as the activation of Cdc42 protein leading to actin polymerisation. Emerging evidences suggest that ApoA1 mediates anti-inflammatory effects and conversely, is negatively regulated by inflammatory cytokines. Collating these findings, added to the clinical evidences of using HDL as a therapeutic target for cardio vascular diseases, we hypothesize that ApoA1 could be useful in neurite outgrowth after mechanical injury by 1) mediating polymerisation of actin and 2) restricting inflammatory responses after injury which are deleterious to healing.


Assuntos
Apolipoproteína A-I/fisiologia , Neurônios/patologia , Apolipoproteína A-I/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Morte Celular , Humanos , Modelos Teóricos , Regeneração Nervosa , Neurônios/metabolismo , Neurônios/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
20.
Biochem Biophys Res Commun ; 465(4): 797-802, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26307536

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by the increase in CAG repeats beyond 36 at the exon1 of the gene Huntingtin (HTT). Among the various dysfunctions of biological processes in HD, transcription deregulation due to abnormalities in actions of transcription factors has been considered to be one of the important pathological conditions. In addition, deregulation of microRNA (miRNA) expression has been described in HD. Earlier, expression of microRNA-214 (miR-214) has been shown to increase in HD cell models and target HTT gene; the expression of the later being inversely correlated to that of miR-214. In the present communication, we observed that the expressions of several HTT co-expressed genes are modulated by exogenous expression of miR-214 or by its mutant. Among several HTT co-expressed genes, MFN2 was shown to be the direct target of miR-214. Exogenous expression of miR-214, repressed the expression of MFN2, increased the distribution of fragmented mitochondria and altered the distribution of cells in different phases of cell cycle. In summary, we have shown that increased expression of miR-214 observed in HD cell model could target MFN2, altered mitochondrial morphology and deregulated cell cycle. Inhibition of miR-214 could be a possible target of intervention in HD pathogenesis.


Assuntos
GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/genética , MicroRNAs/genética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Regiões 3' não Traduzidas , Animais , Ciclo Celular/genética , Linhagem Celular , Regulação para Baixo , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...